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SUMMARY

A methodology to compute the fatigue life for different ratios, r, of applied stress to the laminate strength
based on first ply failure criteria combined with thermal cyclic loads has been developed and demonstrated. Degrad-

ation effects resulting from long term environmental exposure and thermo-mechanical cyclic loads are considered in

the simulation process. A unified time-stress dependent multi-factor interaction equation model developed at NASA

Lewis Research Center has been used to account for the degradation of material properties caused by cyclic and aging

loads. Effect of variation in the thermal cyclic load amplitude on a quasi-symmetric graphite/epoxy laminate has been

studied with respect to the impending failure modes. The results show that, for the laminate under consideration, the

fatigue life under combined mechanical and low thermal amplitude cyclic loads is higher than that due to mechanical

loads only. However, as the thermal amplitude increases, the life also decreases. The failure mode changes from

tensile under mechanical loads only to the compressive and shear at high mechanical and thermal loads. Also,

implementation of the developed methodology in the design process has been discussed.

INTRODUCTION

High speed civil transport (HSCT) engine/structure components are subjected to severe mechanical and

thermal cyclic loads. A prime design objective of HSCT components is to assure the safe life of these components

under such loading environment. Assessment of component life depends on the behavior of materials used. High

temperature polymer matrix composites are being considered as prime candidate materials for some auxiliary HSCT

propulsion structure components. Determination and quantification of long term behavior of composite materials is

complicated because of its inherent heterogeneity. Therefore, it is important to develop cost effective and efficient

methods to predict the life of components made of polymer matrix composite materials. The complexity of predict-

ing composite behavior is compounded by multiple scales (micro, macro, and laminate), fabrication process,

constituent materials, and aggressive load environment. Successful utilization of polymer matrix composites in

aerospace structures hinges largely upon the ability to predict their long term behavior. The current practice of

conducting long term testing of materials and components entails enormous cost and time consumption to capture
the effect of all the design variables. Therefore, realization of the full potential of composite materials is not possible

without innovative computational approaches capable of handling these aspects in an integrated manner. Also, such

computational procedures could aid in identifying critical experiments to be performed as well as reduce the number

of tests to be conducted to a manageable proportion.

Traditional computational approaches for life and long term behavior rely on empirical data and are not

generic or unique in nature. Also, those approaches are not easy to implement in the design procedure in an effective

integrated manner. The focus of ongoing research at the NASA Lewis Research Center has been to develop advanced



integratedcomputationalmethodsandrelatedcomputercodes to perform a complete reliability based assessment of

composite structures. These methods account for uncertainties in all the constituent properties, fabrication process

variables, and loads to predict probabilistic micromechanical, ply, laminate, and structural responses. These methods

have already been implemented in the Integrated Probabilistic Assessment of Composite Structures (IPACS) com-

puter code (ref. 1). This report deals with the deterministic part of the methodology for combined thermo-mechanical

loads. Probabilistic assessments for only mechanical cyclic loads are given in reference 2. The main objective of this

report is to illustrate the effectiveness of the methodology to predict the long term behavior of composites under

combined mechanical and thermal cyclic loading conditions. A unified time, stress, and load dependent Multi-Factor

Interaction Equation (MFIE) model developed at NASA Lewis Research Center (ref. 2) has been used to simulate the

long term behavior of polymer matrix composites. The MFIE model evaluates the magnitude of degradation and
properties of constituent materials at every time step which in turn is used for micromechanics and laminate

analysis. Possible impending failure modes are checked at every time step. The deterministic part of the methodology
has been implemented in the in-house computer code ICAN (Integrated Composite Analyzer, ref. 3).

Application of the developed methodology is illustrated by considering a graphite fiber and epoxy matrix

composite system. The fatigue life cycle design curves for a (0/-+45/90)s graphite/epoxy laminate are computed for
different applied stress to laminate strength ratios, r, based on first ply failure criteria (hereinafter referred to as

laminate strength) under different ambient temperatures and thermal cyclic load amplitudes. These curves can be used

to assess the fatigue life of a component subjected to thermo-mechanical cyclic loading. Failure modes governing the
life have been identified. Effects of the cyclic thermal load amplitude as well as that of mechanical load have been
discussed.

COMPUTATIONAL SIMULATION

Use of fundamental governing field equations in time domain facilitates tracking and understanding the

failure mechanism throughout the load history. The approach used herein incorporates the micromechanics theory and

time dependent MFIE model to account for the physical process of manufacturing composite material, mechanics

governing the individual constituent behavior, their interactions, and degradation due to aggressive load effects. This

approach allows tracking the development of the failure mechanism without making any approximations on the

actual behavior. The following sections describe the modified computer codes and methodology used in the com-
putational simulation of long term behavior in polymer matrix composites.

Integrated Composite Analyzer (ICAN)

ICAN (ref. 3) computationally simulates the material behavior of polymer matrix composites from fiber/

matrix constituents to the laminate scale including fabrication effects (fig. 1). ICAN uses advanced composite

micromechanics and laminate theories to compute constituent, ply, and laminate scale properties and stresses required
for global structural analysis (left side of fig. 1). ICAN has an updatable resident database containing room temper-

ature properties of commonly available fibers and matrices. All the user needs to do is input the names of fibers and

matrices used in the laminate which reduces the time to input the data and eliminates errors. ICAN also synthesizes

the global structural response to laminate, ply, and constituent response levels which helps the user evaluate the

cause of failure (right side of fig. 1). Details of the ICAN computer code are given in reference 3.

For long term behavior prediction the ICAN computer code was modified to implement time dependence in

the MFIE. Also, a failure analysis based on first ply failure and fiber break criteria is performed at every time step to

determine whether the laminate can take any further load or not. Failure analysis determines the possible failure

modes and maximum load capacity in the respective failure mode. The simulation stops when the laminate is incap-

able of resisting any more load. Thus, the current ICAN is capable of performing transient analysis to incorporate

material degradation caused by thermal and mechanical cyclic loads. Details of MFIE are given the following section.



TimeDependentMulti-FactorInteractionEquation(MFIE)Model

It isknownthatpredictingthebehaviorofcompositematerialsisadifficulttask.Accountingforallthe
physicaleffectsandhowtheyaffectthematerialpropertiesintimedomainisevenmorecomplex.Overtheyears,
researchindevelopingaunifiedlawdescribingthematerialbehaviordrivenbyprimitivevariableshasbeenan
ongoingactivityatNASALewisResearchCenter.Theresultofthisresearchisthedevelopmentofaunifiedmulti-
factorinteractionequation(MFIE)model(ref.4).

Concepts used in reference 4 have been expanded to include the time dependent degradation effect on material

behavior due to environmental, fabrication, and load effects (ref. 2). A generic form of the equation that includes

those effects is given by

(1)

where

M

V

material

primitive variable affecting the material property

Superscripts:

exponent for a given primitive variable effect

Subscripts:

affected material property

primitive variable index

condition at the final stage
condition at the reference stage

Each term in parenthesis accounts for a specific physical effect represented by its respective primitive variable. Any

number of effects can be included in a single equation as is readily seen. The exponents are determined from the select

experimental data.
An important part of the previous model is the fact that one equation can include all the effects with any

nonlinearity in the material behavior. It can describe all the interacting effects of different variables (thermal,

metallurgical, mechanical, chemical, and load). Since the variables used are at a primitive level, it simulates the in

situ degradation in material properties resulting from applied cyclic and environmental effects. The specific form of

the equation used in this investigation to account for time dependent degradation is

 ln(Mp _ Tgw-T.]l/1 _.lm¢l_s__f 1 Sf-_.) t. SfNI_%0 "r w-r  Jt sf) t
(2)

where

Mp material property subjected to degradation

T temperature

S strength



o

N

t

stress

number of cycles
time

Superscripts:

1

m

n

P

q

exponent for temperature
exponent for stress

exponent for time

exponent for mechanical cyclic load effect

exponents for thermal cyclic load effect

Subscripts:

gw

gd
o

f

M

T

wet glass temperature

dry glass transition temperature
reference condition

final condition

mechanical cyclic load

thermal cyclic load

SIMULATION CASES, RESULTS AND DISCUSSION

Demonstration examples include combined mechanical and thermal cyclic loads, as mentioned before. A

(0/±45/90)s laminate made of graphite fibers and an epoxy matrix is subjected to uniaxial tensile cyclic as well as

thermal cyclic loads as shown in figure 2. Each ply has a thickness of 0.127 mm. The properties of constituent

materials and fabrication variables are given in table I. Initially, the laminate was subjected to a uniaxial tensile

static load and failure analysis was performed to evaluate static laminate strength. It was found to be 1184 kg/cm.

Since the purpose of this study was to develop fatigue life cycles, the laminate was subjected to different applied

mechanical stress to strength ratios, r. Fatigue life computation of the load cases given in table II were performed to

illustrate the behavior of composite materials under the in-phase combined thermo-mechanical cyclic loads as sim-

ulated by the modified ICAN. These load cases are divided into three categories. The first category includes only the

mechanical cyclic loads (load cases 1, 2, and 3 in table II). The category 2 load cases are for thermal cyclic loads only

(load cases 4 to 7 in table II). In category 3 load cases, the mechanical cyclic loads are combined with the thermal

cyclic loads of different amplitudes such as 0.0, 15.5, 24.0, 38.0, and 51.7 *C (load cases 8 to 22 in table II). These

three categories were chosen to illustrate the effect of thermal and mechanical cyclic loads on the fatigue life.

In each load case simulation, the fatigue life for each ply was computed based upon first ply failure criteria.
The shortest life of a ply in the laminate was considered to be the life of a laminate. The results of the first three load

cases are summarized in figure 3. This figure shows the variation of fatigue life resulting from mechanical cyclic

loads only. The fatigue life in these three cases was primarily governed by failure in 90 ° ply caused by the transverse

tensile stress being greater than the corresponding strength. Thus, the life under uniaxial tensile cyclic loads of that

laminate is governed by the transverse tension failure in 90 ° plies. Figure 3 also shows that the fatigue life under
mechanical cyclic loads drops rapidly as the amplitude of applied cyclic stress increases. At load ratios r = 60, 70,

and 80 percent, the fatigue life is 90, 38, and 15 percent of the endurance limit, NfM, respectively.

Figure 4 depicts the variation of fatigue life with respect to cyclic temperature amplitude (load cases 4 to 7).

Fatigue life caused by thermal cyclic loads in the laminate under consideration is mainly governed by the transverse
compressive failure in a 45 ° ply. As shown in the figure, the fatigue life variation is not as severe when it is caused

by variation in cyclic temperature amplitude as it is in the case when it results from mechanical load amplitude. The

fatigue life for temperature amplitudes of 15.5, 24.0, 38.0, and 51.7 *C is 92, 87, 80, and 73 percent, respectively.
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Thermalloadsinducecompressivestressesintransverse direction of both 45* and 90 ° plies. Since allowable ply

compressive strength is higher than the tensile strength, a higher life is expected under thermal loads.
Figures 5 to 9 contain fatigue life curves under combined thermo-mechanical loading with cyclic temper-

ature amplitudes of 0.0, 15.5, 24.0, 38.0, and 51.7 °C, respectively. These results are very interesting because they

enable us to determine the behavior of graphite/epoxy composite material under thermal cyclic loading. It is seen

from these figures (and fig. 10) that the fatigue life variation with respect to the applied stress ratio is almost linear

up to a cyclic temperature amplitude of 24 °C and becomes nonlinear for temperature amplitudes above 24 °C. This

is due to the fact that, at low temperature amplitudes, the failure is mostly governed by the longitudinal compressive

strength in a 90 ° ply. However, at higher thermal amplitudes and low load ratio, r, the governing failure mode shifts

from 90 ° ply to 45 ° ply with compressive strength in the transverse direction being the limiting factor. Also, at high

load ratio, r, and higher temperature amplitudes, the failure mode is controlled by the shear strength in a 45 ° ply.
Thus when the shear mode failure controls the behavior, the drop in life is also steep with an increase in load ratio, r.

Figure 10 shows that the fatigue life under mechanical cyclic loads is higher than that with combined low

amplitude thermo-mechanical cyclic loads. But, as the temperature amplitude increases with the mechanical loads, the
life decreases. The reason for this is that in failing plies the tensile stresses resulting from mechanical loads are

modified by the compressive stresses caused by thermal loads. Thus, the failure mode changes from tension to

compression. However, the continuing rise in thermal load amplitude increases the compressive stresses and thus
results in decreased life. In general for the laminate under consideration, the fatigue life under combined mechanical

and low thermal amplitudes is higher than that resulting from mechanical loads only.

The information in figures 3 to 10 can be used as a design aid to determine the component life as well as to

make decisions on its continuing use. Similar design curves can be developed readily for any polymer matrix com-

posite with any laminate configuration and for any load condition. Further work on developing reliability based

fatigue life design curves is underway. A reliability based approach provides the level of reliability of a given design

as well as identifying the controlling variables. Thus, it helps improve the manufacturing process, design experi-

ments, and develop inspection guidelines.

CONCLUSION

A methodology to simulate the cyclic load effect on the long term behavior and fatigue life of polymer

matrix composites has been developed, implemented in the in-house computer code ICAN, and demonstrated by

examples. A main feature in this methodology is a generic time dependent multi-factor interaction equation (MFIE)
model. Also, the methodology has been implemented in ICAN to facilitate its future integration with the IPACS

computer code to perform probabilistic composite structural analysis. Fatigue life cycle curves for a (0/±45/90)s

graphite/epoxy laminate under uniaxial tensile and thermal loads were simulated. It was observed that the life of a
laminate with low amplitude thermal loads is higher than that under mechanical cyclic loads. Also at low thermal

cyclic load amplitudes, the variation of fatigue life with respect to load ratio, r, is linear and decreases mildly as r

increases. Whereas at high thermal amplitudes, it becomes highly nonlinear and decreases rapidly in life as r

increases. At low thermal cyclic amplitude loads, the failure is governed by transverse compressive strength in

90 ° plies. On the other hand, at high thermal cyclic amplitudes and high load ratios, it is governed by shear failure in

45 ° ply.
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TABLE I.--CONSTITUENT PROPERTIES

Fiber

Normal Modulus, Efal, GPa 213.7

Normal Modulus, Et22, GPa 13.8

Poisson's ratio, v12 0.20

Poisson's ratio, v23 0.25

Shear Modulus, Gfl2, GPa 13.8

Shear Modulus, Gf23, GPa 6.9

Tensile strensth, Srr, GPa

Compressive strensth, Src, GPa

Matrix

2.8

2.8

Normal Modulus, Era, GPa 3.4

Poisson's ratio, vm 0.35

Tensile strength. SmT. GPa

Compressive siren,.h, Smc, GPa

Shear strength, Sins, GPa

0.1

0.24

0.09

Fabrication variables

Fiber volume ratio, percent 60

Void volume ratio, percent

Ply thickness, mm 0.127
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TABLE II.--FATIGUE LIFE COMPUTATION LOAD CASES

Case Mechanical

number cyclic load ratio,
r

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

Mean temperature,
*C

Cyclic temperature,
*C

0.6 21.1 0.0

0,7 21.1 0.0

0,8 21.1 0.0

0.0 65.6 15.6

0.0 65.6 23.9

0.0 65.6 37.8

0.0 65.6 51.7

0.6 65.6 0.0

0.7 65.6 0.0

0.8 65.6 0.0

0,6 65.6 15.6

0.7 65.6 15.6

0.8 65.6 15.6

0.6 65.6 23,9

0.7 65.6 23.9

0,8 65.6 23.9

0,6 65.6 37.8

0.7 65.6 37.8

0.8 65.6 37.8

0.6 65,6 51,7

0.7 65.6 51,7

0.8 65.6 51.7
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Figure 1 .--Schematic of ICAN computer code.
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Figure 2.--Description of thermo-mechanical cyclic load.
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